If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-7x-19.6=0
a = 1; b = -7; c = -19.6;
Δ = b2-4ac
Δ = -72-4·1·(-19.6)
Δ = 127.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{127.4}}{2*1}=\frac{7-\sqrt{127.4}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{127.4}}{2*1}=\frac{7+\sqrt{127.4}}{2} $
| -10x+9(8)=-18 | | 4/x+5=x-5/6x | | 10+4x=2(-x+5)-18 | | (y+1)(y-1)=-8y-13 | | 10+4x=29-x+5)-18 | | 4/y=y/y-1 | | 3x-23=19-4x | | 5^y=125 | | 6x^2+43x-23=0 | | (2x-1)^-13=(x-1)(x-2) | | 2,5+14y=-3,1 | | 2,5+14y=3,1 | | 8=6/4+x | | 7+5(x-7)=22 | | a^=11a-18 | | d/2+18=26 | | -5,6/14=y | | 4^y=128 | | 3y^+6y+8=0 | | 43x+3=3 | | 3(x-2)+11=8(2-3x)-10 | | 5/x=x-3/2 | | 7m=98 | | 5x=x-50 | | 5x–4=2x–1 | | X-2(x+4)=5 | | 28=4b-12 | | 17=9r-19 | | 7x+12=5x-9 | | 5=w-13 | | 10(s-7)=-151 | | (9-2x)=(7-4x+6x^2) |